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Abstract 

Using the methods of Hilbert optics and shear interferometry, the evolution of convective 
structures in a vertical layer of water, limited by flat heat exchange surfaces under non-
stationary boundary conditions, is visualized using Hilbert optics and shear interferometry. 
The temperature field was restored. A numerical simulation of the isotherms field in the 
monotonic cooling mode of the vertical wall is performed. The inverse problem of reconstruc-
tion of interferograms and Hilbertograms from a numerical model of a temperature field in 
the convective flow was solved. 
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1. Introduction 
Optical diagnostics methods largely deter-
mine the level of experimental research in 
modern hydro and gas dynamics. The 
choice of convective flows as an object of 
optical diagnostics is explained by the spe-
cial importance of convection in geody-
namics, atmospheric and ocean physics, in 
hydrodynamic and thermophysical pro-
cesses with phase transitions [1, 2]. Inter-
est in these problems has escalated recent-
ly due to the intensification of cyclic pro-
cesses of melting and ice formation in the 
Arctic and Antarctic regions, which have a 
huge impact on the world's oceans and 
climate. Experimental and theoretical stud-
ies of convective processes and of the dy-
namics of the water – ice phase transition, 

which take into account the anomaly of wa-
ter density in the region of 0 ÷ 4 ° C, are 
necessary for numerous technical and 
technological applications [3]. The study of 
the dynamics of phase transitions in a su-
percooled liquid and the evolution of con-
vective structures in a water–ice system 
requires the use of non-perturbing diag-
nostic methods based on modern advances 
in optics, laser technology and information 
technology. The present work is motivated 
by the need for such research. 

2.  Method and experi-
mental setup 
A simplified diagram of a research complex 
containing an optical diagnostics system 
and an experimental stand is shown in 
Figure 1. 
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Fig. 1. Scheme of the experimental setup. 

 

 
Fig. 2. The rectangular cavity with water. Optical tubes that feed the refrigerant to the heat 

transfer side plates are visible. 
 



The diagram contains a lighting module 
consisting of a light source 1 (DRSh – 250 
mercury lamp), a condenser lens 2 and a 
slit diaphragm 3 placed in the front focal 
plane of the lens 4, which forms a probing 
field in the test medium. Here water is 
used as the medium and it fills up the rec-
tangular cavity 5 with transparent glasses 
of optical quality (Fig. 2). The internal di-
mensions of the cavity are 136 × 86 × 30 
mm, the side walls are formed by high-
quality cooled flat parallel copper plates 6 
and 7. The temperature of one of the plates 
(T1) is controlled and maintained by a 
thermostat within up to –28°C. The tem-
perature of the other plate (T2) is in the 
range from room temperature to ~ 8.0°C. 
Inside the plates there are cavities into 
which coolant is supplied from thermostats 
8 and 9. Thermostats are controlled by 
computer 10 according to a given program. 
The tubes supplying the refrigerant to the 
heat exchange side plates are designated as 
11–14, the outflow tubes are 15, 16. The ar-
rangement of the feed tubes and outflow 
tubes may vary according to the conditions 
of the experiment. The distance between 
the tubes is 80 mm. The lens 17 forms in 
the frequency plane the Fourier spectrum 
of the probing light field perturbed by the 
medium under study. The quadrant Hilbert 
filter 18 is placed in the Fourier plane of 
the lens 17. The frequency axis Кх of the 
Hilbert filter is orthogonal to the direction 
of the image of the slit diaphragm of the 
light source (ψ=45°). Lens 19 performs the 
inverse Fourier transform of the Hilbert 
spectrum of the optical signal. The visual-
ized phase structure of the light field, per-
turbed by the medium under study, is rec-
orded by the digital video camera 20 con-
nected to the computer 16. The optical di-
agnostics system was implemented on the 
basis of the serial IAB–463M shadow de-
vice [3], in which the following modules 
were modified: the light source module, the 
Fourier filtering module of the optical sig-
nal and the image recording module of the 
phase perturbations of the light field in-
duced by the medium under study. The 
probing field, formed by the lens 4, passes 
through the test medium (water), in which 
the boundary conditions for temperature 

(T1 and T2, T1 <T2) are set according to a 
given program by lateral thermostatted 
surfaces 6 and 7. In the space between the 
thermostatted surfaces, convective struc-
tures arise, which appear as perturbations 
of the fields of optical phase density. These 
structures are induced by Rayleigh–Benard 
convection and complicated by the pres-
ence of a phase transition and an anomaly 
in the density of water in the temperature 
range of 0÷4°C. 
 Near the lateral temperature-controlled 
surface, as the temperature gradient grows, 
water turns into a supercooled liquid, pass-
ing into a state of unstable equilibrium. In 
such a medium, the transition from liquid 
phase to solid-crystalline state occurs. This 
is a phase transition of the first kind. It be-
comes apparent through the appearance of 
a crystallization wave and is accompanied 
by an energy release. In its turn the release 
affects the dynamic distribution of the op-
tical phase density gradient in supercooled 
water and induces phase perturbations in 
the probing light field, the Fourier spec-

trum of which  forms in the fre-
quency plane of the lens 17.                       
 The coherent transfer function of the spa-
tial-frequency filter 18 that performs the 
one-dimensional Hilbert transform is de-
scribed by the following expression: 
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where  and   are spatial frequencies; 

 and  are Heaviside func-

tions;   is the phase shift defined by the 
corresponding quadrant of the spatial-
frequency filter.  A filter with a coherent 
transfer function (1) performs a one-
dimensional Foucault–Hilbert transform.  

 In the Fourier plane  the spatial 

frequency axis   is orthogonal to the im-
age of the slot light source. Fourier spec-
trum of the light field directly after the fil-
ter:  
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Here  is the spatial-frequency 
Fourier spectrum of the light field per-
turbed by the medium under study; 

 is the Fou-
rier spectrum of the light field subjected to 
a one-dimensional Hilbert transform along 

the axis . The phase shift  is a function 

of the wave length  of the probing light 

field: . When the wavelength , 

satisfies the condition , the 
Fourier filter 18 performs a one-
dimensional Hilbert transform: 
  

 (3) 
  
If the medium under study induces only 
phase perturbations of the probe field, the 
Fourier spectrum of the disturbed field is 
described by the expression      
  

 
   
Filtered Fourier-spectrum of phase pertur-
bations: 

 
 

= {∑ [1 + 𝑖ψ̃𝑚𝑥
(𝐾𝑥, 𝐾𝑦)]𝑚 } [−𝑖sgn𝐾𝑥] =

∑ ψ̂𝑚𝑥
(𝐾𝑥, 𝐾𝑦)𝑚 ,    (4) 

  

 where   is the Fourier-
spectrum of phase perturbations corre-
sponding to the mth-order Hilbert-fringe. 
Here it is taken into account that the Hil-
bert-transform has quasi-differentiating 
properties. Therefore, the Hilbert image 
reflects the structure of the phase perturba-
tion field gradients.    
        
The camcorder lens 19 performs the Fouri-
er-transform of the filtered Fourier- spec-
trum of phase perturbations  
  

    (5) 
  

 The phase structures (4) visualized by one-
dimensional Hilbert transform are record-
ed by a camcorder photomatrix. Image of a 
one-dimensional Hilbert image of phase 
perturbations      
  

 
  
is analyzed in the coordinate system (х’, у’), 
rotated relative to the coordinate system (х, 
у)                by a=45°:  
  

  (6) 

Where . 
In case of a broadband source, a one-
dimensional Foucault–Hilbert transform is 
performed with a coherent transfer func-
tion of the filter (1). The result of filtering is 
the transformation of the phase perturba-
tions field into an analytical signal, which 
is a superposition of the filtered signal and 
its Hilbert-image. Hence, the signal detect-
ed by the photomatrix is a superposition of 
phase perturbation images and its Hilbert-
forms. The recorded image is a structure 
consisting of Hilbert-fringes, displaying the 
gradients of perturbations of the optical 
phase density in the medium under study. 

3. Results 
Figure 3 shows a selection of frames from a 
video film which illustrates the Hilbert-
visualization of convective structures in a 
layer of fresh water bounded by vertical flat 
heat-transfer surfaces. 
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Fig. 3. Video frames illustrating Hilbert-visualization of convective structures and phase tran-
sition in water. 

  
Figure 4 presents an example of convective structures and a phase transition in the same lay-
er, visualized by shear interferometry. Hilbertrograms and shear interferograms display ex-
tremes of the phase gradients and correspond to isotherms. 
The usage for the approximation of Bernstein polynomials allows you to build a grid that 
adapts to the deformations of the interference lines. Figure 5 illustrates the approximation of 
interference fringes by Bezier curves. 
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Fig. 4. Shear interferograms visualizing convective structures and phase transitions in a verti-

cal layer of fresh water. 
  
  

 
Fig. 5. Approximation by Bezier curves of interference fringes on the shear interferogram. 

  
By approximating the interference and Hilbert fringes  by Bernshtein's polynomials, it is pos-
sible to build a uniform grid over which two-dimensional spline interpolation is performed 
and the temperature field is restored (Fig. 6, 7). 
  



 

 

Fig. 6. The reconstructed temperature field 
using a shear interferogram (x – y axis). 

Fig. 7. Isotherms of the restored tempera-
ture field (x – y axis). 
  

Figure 8 presents the results of numerical modeling of the temperature-field isotherms in-
duced by non-stationary heat-exchange boundary conditions in the monotonic cooling mode 
of vertical walls. As verification, reconstruction of shear interferograms and Hilbert images 
from a numerical model of isotherms was performed.  
  
Dimensions of the computational domain: liquid layer thickness 84 mm., layer height 136 
mm. The initial system temperature is 20 degrees Celsius. The left wall cools linearly in time 
to 8°C within 2500 s, the right one to 0°C within the same time period. The upper and lower 
horizontal borders of the cavity are 10 mm thick. Outer surfaces (Plexiglas) of the horizontal 
walls are adiabatic. In Figure 8, the isotherm with T=4°C is highlighted in red and with 
T=8°C in green. 
  

 

   

t = 236.12с t = 511.6с t = 838.22с t = 1223.9с 

 

  

 

t = 1680.37с t = 2219.51с t = 2853.1с t = 3604.73с 



    

t = 4490.2с t = 5536.96с t = 6772.65с t = 8370.4с 
Fig. 8. Numerical simulation of the evolution of isotherms induced by unsteady boundary 

conditions in a vertical layer of water. 
  
Convective heat transfer in fluid in a two-dimensional formulation is described by a dimen-
sionless system of Navier–Stokes equations, energy and continuity in the Boussinesq approx-
imation, written in terms of temperature  T , vorticity ω and stream function ψ: 
  

   (7) 
 

 
 

 
  
Conductive heat transfer in massive (Plexiglas) horizontal walls is described by the heat equa-
tion: 
  

    (8) 
  
Designations in equations (7) and (8):  νf  – 
kinematic viscosity of fluid, m2/s;  λf – 
thermal conductivity of fluid, W/m·K;  λw – 
thermal conductivity of horizontal walls 
material, W/m·K;  ρf  – density of fluid, 
kg/m3;  ρw – density of horizontal walls, 
kg/m3;  сpf  – specific heat of fluid, 
J/kg·K;  сw – specific heat of horizontal 
walls material, J/kg·K;  g – gravitational 
acceleration, m/s2;  βf  – thermal expan-
sion coefficient of fluid, K-1;  H – height of 
fluid layer, m;  Pr – Prandtl number;  Gr – 
Grashof number;  x, y – dimensionless 

Cartesian coordinates;  T – dimensionless 
temperature;  ω – dimensionless vortici-
ty;  ψ – dimensionless stream function;  u, 
v – dimensionless velocity components: 
horizontal and vertical. 
  
The problems are solved numerically by 
the finite element method in conjugate 
formulation. In solving the motion equa-
tion, the dependences of the density and 
coefficient of volume thermal expansion on 
temperature are considered. To calculate 
the constant parameters, we used fixed 



values of the thermophysical properties of 
water at 0°C and of Plexiglas. Water prop-
erties: density ρf = 999.839 kg/m3; coeffi-
cient of kinematic viscosity νf = 1.793∙10-6 
m2/s; coefficient of thermal conductivity λf 
= 0.554 W/(m·K); specific heat сpf = 4218 
J/(kg·K); crystallization heat R = 333.7 
kJ/kg. Properties of Plexiglas wall: ρf = 
1180 kg/m3; λw = 0,195 W/(m·K); сw = 
1270 J/(kg·K).    
  
At the solid boundaries in the system, the 
no-slip condition is set for the velocity 
(and, as a consequence, for the stream 
function). The boundary condition for the 
vortex is obtained from the field of the 
stream function using the method of con-
jugate resultants [4]. At the boundaries of 
the liquid with solid walls, the condition of 
continuity of temperature and heat flux is 
set. A non-uniform triangular grid, con-
densed to varying degrees to all borders of 
the computational domain, with the num-
ber of nodes ≈4*104, was used. Linear ba-
sis functions have been defined on ele-

ments. To build a triangulation, a cellular 
step-by-step algorithm using the maximum 
angle was used [5].  
  
The program implements an iterative pro-
cess, in which, if necessary, the desired 
values of variables from the previous steps 
and the calculated values of the coefficients 
from the parameters were substituted. The 
temperature field was calculated first, and 
then the vortex and stream function fields. 
In an iterative process inside the time step, 
the relaxation method was used. The finite-
element system of linear algebraic equa-
tions was solved by the iterative method of 
the local-optimal scheme (LOS) with in-
complete decomposition into lower and 
upper triangular matrices (LU) [4]. 
Hilbertograms and shear interferograms 
synthesized from numerical models of iso-
therms related to time points: a) – 122 s; b) 
– 305 s; c) – 710 s after turning on the 
thermostats that control the temperature 
of the heat exchange surfaces, are present-
ed in Figure 9.

 
  

 

 

 

  

 

a b c 
Fig. 9. Examples of numerically modeled fields of isotherms (a, b, c), reconstructed from 
these fields of gilbertograms and shear interferograms (red line-isotherm + 4 ° С). 
  



 The isotherm corresponding to the inversion of water density (+4°С) is highlighted in red. It 
divides the space into two areas. Above the isotherm (+4°C), a vortex motion of convective 
structures occurs and is directed clockwise. Under this isotherm, the vortex motion of convec-
tive structures occurs counterclockwise. The conjugate vortices formed above and below the 
isotherm (+4°C) transfer the warm water downwards, and the cooled water upwards. 
  
Figure 10 shows the interferogram corresponding to this convective structure: a) – experi-
mentally obtained; b) – numerical model.  
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Fig. 10. Shift interferograms: a – experimental; b – numerical model. 
  
  

 
a 

 
b 

Fig. 11. Hilbertograms: a – experimental; b – numerical model. 
  
Figure 11 shows:  a – the experimentally 
obtained gilbertograms; b – the gilberto-
grams synthesized from the structure of 
numerically simulated isotherms. The Hil-
bert bands corresponding to extremums of 
isotherm gradients are clearly visible. Fig-
ures 9–11 illustrate the qualitative adequa-
cy of the results of numerical simulation 
and experiment. 

Conclusion 
The study of convective currents induced 
by non-stationary boundary conditions and 
their influence on the structure and dy-
namics of the phase transition are relevant 

for the development of crystal growing 
technologies [6], understanding the anom-
alies of formation and melting ice in the 
Arctic and in the Antarctic regions. Studies 
to date have been performed only with a 
narrow range of parameters and so far 
have no systemic nature. Solutions of galli-
um, cadmium–mercury–tellurium and 
some other substances and materials have 
similar dependences between the density 
and temperature. Therefore, water can be 
used as a melt simulator fluid for testing 
single-crystal production technologies. The 
scope of application of the results obtained 
by methods of optical diagnostics and nu-
merical modeling adapted to this problem 



is not limited to currents of a convective 
nature. It can be extended to solving fun-
damental and applied problems in experi-
mental hydro and gas dynamics, thermal 
physics, biology, and medicine.  
This work was carried out with the partial 
support of the Russian Foundation for 
Basic Research (18-38-00790 mol. a). 
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